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Abstract For arbitrary values n and £ quantum numbers, we present the solutions
of the 3-dimensional Schrodinger wave equation with the pseudoharmonic potential
via the SU(1, 1) Spectrum Generating Algebra (SGA) approach. The explicit bound
state energies and eigenfunctions are obtained. The matrix elements 7> and ra% are
obtained (in a closed form) directly from the creation and annihilation operators.
In addition, by applying the Hellmann—-Feynman theorem, the expectation values of
r2 and p? are obtained. The energy states, the expectation values of % and p® and
the Heisenberg uncertainty products (HUP) for set of diatomic molecules (CO, NO,
0,, Ny, CH, Hj, ScH) for arbitrary values of n and £ quantum numbers are obtained.
The results obtained are in excellent agreement with the available results in the liter-
ature. It is also shown that the HUP is obeyed for all diatomic molecules considered.
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1 Introduction

The spectrum generating algebra (SGA) methods have been playing an important role
in solving some quantum mechanical problems, since its introduction by Schrédinger,
Infeld, Infeld and Hull [1-5]. This technique serves as a useful tool in various fields
of physics, ranging from quantum mechanics (relativistic and non relativistic), mathe-
matical physics, optics, solid state physics, nuclear physics to chemical physics. This
can be achieved through the construction of the ladder operators (creation and annihi-
lation operators) or raising and lowering operators. From these ladder operators, the
compact dynamical algebraic groups (a suitable Lie algebra) that such system belongs
can be easily realized [6-37].

It should be noted that, Schrodinger factorization method has been less frequently
applied to physical systems than Infeld-Hull factorization method, as it has been ana-
lyzed in detail by Martinez et al. [33], and exemplified later with a typical system
[32]. Martinez and Mota presented a systematic procedure of using the factorization
method to construct the generators for hidden and dynamical symmetries, and applied
this study to 2D problems of hydrogen atom, the isotropic harmonic and other radial
potential of interest.

This algebraic approach has been successfully applied to a set of model potentials
such as the Morse potential, Poschl-Teller potential, pseudoharmonic potential, infi-
nite square well in 3D as well as N-dimensions [9, 12-37] and their energy spectrum
and the eigenfunctions have been studied.

The SU(1, 1) dynamical algebra from the Schrédinger ladder operators for hydro-
gen atom, Mie-type potential, harmonic oscillator and pseudoharmonic oscillator for
N-dimensional systems have been extensively discussed by Martinez et al. [33]. In a
similar fashion, Salazar-Ramirez et al. [34,35] have applied the factorization method
to construct the generators of the dynamical algebra SU (1, 1) for the radial equation
of the non-relativistic and relativistic generalized MICZ-Kepler problem. It should
be noted that the generators in the examples [32-35] above have been constructed
without adding phase as an additional variable like in Martinez-y-Romero et al. [15].

Gur and Mann [30] have used the SU(1, 1) SGA method to construct the asso-
ciated radial Barut-Girardello coherent states for the isotropic harmonic oscillator in
arbitrary dimension and these states have been mapped into the Sturm-Coulomb radial
coherent states. The dynamics of the SU (1, 1) coherent states for the time-dependent
quadratic Hamiltonian system has been discussed by Choi [36].

In their work, Motavalli and Akbarieh [37] presented a general construction for
the ladder operators for special orthogonal functions based on the Nikiforov-Uvarov
formalism and generated a list of creation and annihilation operators for some well
known special functions.

In the present study, we have followed the approach introduced by Dong [9]. This
is done by using the recursion relations for the generalized Laguerre polynomials and
the explicit form of the eigenfunctions, the SU (1, 1) dynamical algebra generators for
some quantum mechanical systems can therefore be obtained.

Apart from generating the eigenvalues and eigenfunctions, this approach offers the
additional advantages in that it can be used to find the matrix elements in a simple
way, and it is also very useful in constructing coherent states of a given Hamiltonian
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system [30,36,38]. Thus, Gur and Mann [30] used SGA approach to construct the
radial Barut-Girardello coherent states for the isotropic harmonic oscillator in arbi-
trary dimension and mapped these states into Sturm-Coulomb radial coherent state; the
dynamics of SU(1, 1) coherent states are investigated for the time-dependent quadratic
Hamiltonian system by Choi [36]. Very recently, the second lowest and second highest
bases of the discrete positive and negative irreducible representations of SU (1, 1) Lie
algebra via spherical harmonics are used to construct generalized coherent states by
Dehghani and Fakhri [38].

In recent years, discussion on the 3-dimensional anharmonic oscillators has been
receiving considerable attention in chemical physics. This is due to their usefulness in
studying the dynamical variables of diatomic molecules. The Morse potential has been
one of the most popular model potential which is employed in the study of molecular
spectra [39-45].

The corresponding wave function does not vanish at the origin, and the exact solu-
tions for any angular momentum (¢ # 0 ) are as yet unknown. Several other potentials
are been used as alternatives and their performances have been compared with the
Morse potential [43,46-56]. For examples, Kratzer and pseudoharmonic potentials
which have known exact solutions like in the Coulomb and harmonic oscillator model
potentials [31,45,57-61].

For the purpose of this study, we consider pseudoharmonic potential. This potential
has been very useful in the area of physical sciences and it has been extensively used
to describe interaction of some diatomic molecules since its introduction [9,28,29,
57,62-72]. Sage [68] has studied the energy levels and wave functions of a rotating
diatomic molecule using a three-parameter model potential called the pseudogaussian
(pseudoharmonic) potential and he found that the potential is reasonably behaved for
both small and large internuclear separations.

Obviously, the pseudoharmonic oscillator behaves asymptotically as a harmonic
oscillator, but has a minimum at » = r, and exhibits a repulsive inverse-square-type
singularity at r = 0. The energy eigenvalues and the eigenfunctions of the pseudo-
harmonic oscillator can be found exactly for any angular momentum. These wave
functions have reasonable behaviour at the origin, near the equilibrium, and at the
infinity [73].

Its characteristics make it useful to model various physical systems, including some
molecular physical ones [9,31,59,68,69,72]. From the mathematical point of view,
it resembles the harmonic oscillator, from which it deviates by two correction terms
depending on the potential depth and the equilibrium distance parameter r,: the first
one is an energy shift and the second one is a modified centrifugal term. The latter can
also be viewed as originating formally from a non-integer orbital angular momentum
[69]. The eigenfunctions and energy eigenvalues are similar to those of the harmonic
oscillator, which can be obtained exactly in the r, — O limit.

Recently, with an improved approximation to the orbital centrifugal term of the
Manning-Rosen potential, Ikhdair [74] used the Nikiforov-Uvarov method to obtain
the rotational-vibrational energy states for a few diatomic molecules for arbitrary
quantum numbers n and ¢ with different values of the potential parameters.

In the study of the diatomic molecules using the diatomic molecular potentials,
different methods have been employed: Nikiforov-Uvarov method [42-45,57-59];
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asymptotic iteration method [60]; Exact method [72]; shifted 1/N expansion [40];
exact quantization rule method [46,61]; SUSY approach [41]; Nikiforov-Uvarov
method [45,57,59]; tridiagonal J-matrix representation [75,76] and algebraic method
[31,77].

The aim of this work is to realize the dynamical SU(1, 1) algebra generators for
the pseudoharmonic potential to obtain the energy eigenvalues, eigenfunctions and the
matrix elements of the pseudoharmonic potential. The results obtained are used to cal-
culate the bound state energies, the expectation values and the HUP of some diatomic
molecules (homogeneous and heterogeneous) for any » and £ quantum numbers.

The scheme of our presentation is as follows: in Sect. 2, we study the 3-dimensional
Schrodinger equation for the pseudoharmonic potential. In Sect. 3, we present the for-
mal solutions of the problem and describe the SGA method used in constructing
the ladder operators for obtaining the energy eigenvalues, the eigenfunctions and the
matrix elements for the pseudoharmonic potential. We present in Sect. 4, the explicit
bound state energies, the numerical values of the expectation values of 7> and p? and
the Heisenberg uncertainty product for the pseudoharmonic potential for the homoge-
neous diatomic molecules (N> and H»); the heterogeneous diatomic molecules (CO,
NO and CH) and the neutral transition metal hydride (ScH). Finally, in Sect. 5, we
discuss our conclusions.

2 The 3-dimensional Schrodinger equation for the pseudoharmonic potential

The pseudoharmonic-type potential can be written in the standard form as [9,28,29,
71,72,78,79]

B
V(r) = Ar* + S +e 1)

This potential is associated with the following molecular potentials:

e Isotropic harmonic oscillator plus inverse quadratic potential

2
V@) = oS

2+%, ©)

here A = puw?, B = g and ¢ = 0 [9,28,29,70,71,78,79].

e The pseudoharmonic potential

2
wn:m(l—ﬁ), 3)

Ve r

where D, is the dissociation energy between two atoms in a solid and 7, is the equi-
librium intermolecular separation. Here, we have A = %, B =D,r,andc = —-2D,

[9,28,29,57,62-70,73,78-82].
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The Schrodinger equation for the three-dimension for this potential is

h? D, , D.r?
[——A+ o P —208} Y, 0,9) = EV(r,0,9). )
21 rs r

If we propose ¥, ¢.m (7, 0, ¢) to have the form

1ﬂn,((,m("a 0,¢) = Rn,Z,m(")YZ,m(ea ®) (5)

then, Eq. (4) reduces to two decoupled differential equations, that is, the radial and
angular wave functions:

&> 2d 2 D, D,r? L(+1
[ + +[M[E—(r—;r%r%—zm)}—(r—z)”Rn,@(r):O

R e 2
(6)
and
LYy m(0.¢) = H*C (L + DYn(0. ¢), (7
where £ = 0,1, 2,... is the orbital angular momentum quantum numbers, n =

1,2, 3, ... 1is the principal quantum number, u is the reduced mass, 7 is the Planck’s
constant divided by 2 and E is the energy eigenvalue. With K? = 2;:—f, Eq. (6) can
be re-written as

Id2 2d |:2+4MDe_2MDer2_VZ(VZ+1)_

e Y 72

] Rpe (r)=0, (8

where

8uD,r?
% )

1
m=5—4+$%+m+

To obtain the relevant algebraic operators for the radial symmetry, Eq. (8) is solved
and the solutions which is a degenerate hypergeometric or Kummer equation (asso-
ciated Laguerre differential equation) is obtained [83—85]. Then, the radial functions
Ry, ¢(r) for this potential is obtained as:

1
R (r) = Npg r7e ™ LY T 20r7), (10)
where
1D
= [ — 11
27’12;’62 (i
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L’,‘l (x) is the associated Laguerre functions [83—85], N, ¢ is the normalization con-
stant which is determined from the normalization condition

e¢]

/ Rue () Ruo (M)dr = Sy (12)
0

as

13)

1

2(222)5@re 43, ]2

Npe=|"2— |
F(n+ye+3)

3 The spectrum generating algebra (SGA)

In a brief introduction, the classical Lie algebra SU(1,1) can be generated by the
elements Ko, K1, K which satisfies the following commutation relations:

[Ko, K1l =iK2, [Ky, K2] = —iKo, [K2, Kol =iKj. (14
Alternatively, these can be expressed in terms of the creation and annihilation operators
Ky =K ik, 15)

the commutation relations together with Ky can be written as:
[Ko, K+] = £K+, [K_, K;+] = 2Kj. (16)

Based on the Schrodinger factorization method, Infeld-Hull factorization method,
we adopt the factorization method introduced by Dong [9]. This is done by construc-
tion of the creation and annihilation operators through the recursion relations of the
Laguerre functions that evolved, and thereby construct a suitable Lie algebra in terms
of these ladder operators.

In this case, we obtain the differential operators Ja with the following property:

TRyt (r) = i Ry 1,0(r), (17
these operators are of the form
Je = Aimj—r + By (r) (18)
and depend only on the physical variable r.
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On operating the differential operator j—r on the radial wave functions (10), we
have,

d 0
L Rue(r) = VT

d 1
y Ru.e(r) — 227 Ryo(r) + Nyg 17 exp(—A r2)d—LZ‘+2 2 r?).
r r

19)

In order to find the relationship between R, ¢ (r) and R, 11 ¢ (r), the expression above
is used to construct the ladder operators T by using the recurrence relations of the
associated Laguerre functions. To find these, the following recurrence relations of the
associated Laguerre functions are used [83—85]:

nLi(x) — m+a)ly_;(x)

(n+ DL, () — (1 +a+ 1 — 0)LE(x) (20)

d o
X d_xL n ()C) =
The creation and annihilation operators are obtained as:

A 1 d 5 . A 1[ d 2 R
J-=—=|—-r—=2x"4+2n+ye|; j+=§ r— —2xr"4+2n+ vy, +3|,

2 dr dr
21
where 7 is the number operator with the property
ARy ¢(r) =nRye(r). (22)
On defining the operator
2 2
Jo = 41—‘ [—;7 - %% W(Vf; 2 2’;2? } , (23)

then, the operation of ji and jo on the radial wave functions R, ¢(r) allows us to
find the following properties:

. 3
T+ Rye(r) = \/(n +1 (ﬂ + ye + —) Ryt1,6(r) = jy+ Ryy1,e(r), 24)

2
n 1 .
J- Ry e(r) = ,|n (ﬂ +ye + 5) Ry_1¢(r) = j- Ry_1,e(r), (25)
~ 2y + 3 .
Jo Ruo(r) = n + 2 = Rur) = jo Rie(r): (26)

On carefully inspecting the dynamical group associated to the annihilation and cre-
ation operators J_ and 7, based on the results of Egs. (24) and (25), the commutator
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[j,, j+] can be evaluated as follows:

[T—, T1Rne(r) = 2joRn.c(r), 27)

where jo = n + ZW;‘—H and operators j; and Jo satisfy the following commutation

relations:
[Jo, TxRue(r) = FIT¢Ra0(r). (28)
We define the Hermitian operators for these operators as follows:
Je=5 (343, dy=5 (F-3). F=d 29)
and the following commutation relations are obtained:
(Fes Kl ==iTey 1Fy, T =iTe, [Tor Txl =iy (30)

The Casimir operator can be expressed as [86]

CRuo) = {Io(To = 1) = T4 T} R = {Go(Fo + D) = F-F1} Rue)

2 3 2ve — 1
= ( )/£4+ ) ( V£4 )Rn,g(r) =1(t — DRy o(r), 31
where
.= 2)/@44- 3. 32)

Then, the Casimir operator C now satisfies the following commutation relations:
€. Je1=1C. 71 =1C, F] = [C. T = 0. (33)

therefore, the operators ji, jx, jy, jz and jo satisfy the commutation relations of
the dynamical group SU(1, 1) algebra, which is isomorphic to an SO (2, 1) algebra
(i.e. SU(1,1) ~ SO(2,1). The commutation rules are valid for the infinitesimal
operators of the non-compact group SU(1, 1) [16,87].

The Hamiltonian operator H takes the form

H = (4n+2y +3) —2D,. (34)

2ur?
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Furthermore, we find that the following physical functions can be obtained by the
creation and annihilation operators J= and [Jp as:

1 A o N
r2Rue(r) = 200 = (g + TR (1), (35)
d A A 3
r——Rn(r) = (J+ — J-) — 5 Rne(r). (36)
dr 2
With Egs. (35) and (36), the matrix elements for r? and rj—r are obtained as follows:

(R e(r) | 72 | Ry e(r))

! 2y +3 _ .
= |:(2n + > )Sm,n — J+Omnt1 — Jam’nli| (37)
and
d . . 3
(B £(r) | rE | Rue(r)) = j40mn+1 = j-8mn—1 — E(Sm,n- (38)

From the relations above, we can deduce the following relations:

d
20 (R e (r) | 7% | R e (r)) + (R () | ro | Bne(r)

= (2n + Vf)am,n - 2j—8m,n—l (39)
and
2 d
20{Rm e (r) | ™ | Ry e(r)) — (R o (r) | r | R ¢(r))
=Q@2n+ve+3)mn—2jr8mnt1- (40)

These two relations form a useful link for finding the matrix elements from the creation
and annihilator operators.

4 The numerical values of the explicit bound state energies, (r2), (p?) and the
Heisenberg uncertainty products

4.1 The explicit bound state energies for the pseudoharmonic potential
The explicit bound state energies for the pseudoharmonic potential are obtained as :

2
e

2ur?

e

Ey = @4n+2y +3) —2D,, (41)

where yy is as stated in Eq. (9).
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4.2 The expectation values of 2 and p? for the pseudoharmonic potential

The expectation values of r> and p? can be obtained by applying the Hellmann—
Feynman theorem (HFT) [80—82,88—104]. This theorem states that, a non-degenerate
eigenvalue of a hermitian operator in a parameter dependent eigensystem varies with
respect to the parameter according to the formula

oE,
av

= (¥ | ~ W), (42)

provided that the associated normalized eigenfunction W,,, is continuous with respect
to the parameter, v. The effective Hamiltonian of the pseudoharmonic potential radial
wave function is

—h? 42 h2£(£+1) D, , Dr2
e e— —r

2 2
e

7:[:

(43)

21 dr? 2,u r r

With v = D, and v = p, then, the following expectation values of r> and p? are
obtained respectively as:

8uD,r? h2r2
ry=|2n+14 = \/(2@ +1)2 + h; ¢ \/2/“;6 (44)

and

1 8uD r2 h?
2\ _ 2 ele
p°y =2uD, | 2n+1+ 20+ 1
(P ¢ \/( "+ K2 \/214 Dere2

4uD, 2uD,r?

- 2 h?
\/ (264 1)2 + B

(45)

4.3 The Heisenberg uncertainty product for the pseudoharmonic potential

In 1927, Werner Heisenberg stated that certain physical quantities, like the position
and momentum, cannot both have precise values at the same time, this is called the
Heisenberg uncertainty principle [105,106]. That is, the more precisely one property
is measured, the less precisely the other can be measured. A mathematical state-
ment of this principle is that every quantum state has the property that the root mean
square (RMS) deviation of the position from its mean (the standard deviation of the
x-distribution):

Ax =V ((x = (x))?) (46)
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and the RMS deviation of the momentum from its mean (the standard deviation of p):

Apy =/ {(px — <px))2)s 47)

the product of which can never be smaller than a fixed fraction of Planck’s constant:
h

AxApy, > 5 (48)

This inequality is very important in physics, it has been pointed out that for a parti-
cle moving non-relativistically in a central potential V(r), the following ‘uncertainty¢6
relation holds [71,101,102,104-111]:

3h
ArAp > 5 49)

With Egs. (44) and (45) and noting that (r) = (p) = 0 (due to parity consideration),
the Heisenberg uncertainty product for the pseudoharmonic potential becomes:

2

1 8uD,r?
Poo=ArAp=|2n+1+ E\/(26 + 12+ /Lh;re h? (50)

4;LDere2

2
\/ (264 1)2 + Bl

1 8uD,r?
2
2n+1+2\/(2€+1) + hze

In this work, we obtained the numerical values of the explicit bound state energies
(Ey ¢), the expectation values of rZ and p2 ((r2) and ( pz)) and the Heisenberg uncer-
tainty product P, , of some diatomic molecules for various values of n and £. In the
case of this study, we have selected some diatomic molecules for the purposes which
they serve in various aspect of chemical synthesis, nature of bonding, temperature
stability and electronic transport properties in chemical physics [42,112-114].

Some of these selected diatomic molecules composed of the homogeneous diatomic
molecules (dimers) (N, and H»); the heterogeneous diatomic molecules (CO, NO and
CH) and the neutral transition metal hydride (ScH).

The spectroscopic parameters and reduced masses for some selected diatomic mole-
cules used in our study are shown in Table 1. The spectroscopic parameters listed in this
table are obtained from the following cited sources: for CO, NO and N, the sources are
[57,58,60,61,72,115,116]; for CH, the sources are [44,46,57,58,61,72,115,117]; for
Hy, the sourceis [118] and for ScH, the sources are [42,112], where ic = 1973.29 eVA
is taken from [42,44,57,58,60,61,72,74,119].

For these selected diatomic molecules, we have available results from the literature
to compare with our results with few ones: CO, NO, CH and N; [57,72].

The numerical values of the explicit bound state energies of some of these dia-
tomic molecules for various values of n and ¢ are obtained and compared with the
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Table 1 Model parameters for some diatomic molecules in our study

Molecules D.(ineV) re(in A) u(in amu)
CO 10.845073641 1.1283 6.860586000
NO 8.043729855 1.1508 7.468441000
No 11.938193820 1.0940 7.00335

CH 3.947418665 1.1198 0.929931

H; 4.7446 0.7416 0.50391

ScH 2.25 1.776 0.986040

exact method [72] and the Nikiforov-Uvarov method [57] for CO, NO, CH and N;. In
the Tables 2, 3 and 4, we have used E, , (FM) to mean factorization method (present
method), E,, ((EM) to mean Exact Method [72] and E;, , (NU) mean Nikiforov-Uvarov
Method [57]. Also, the numerical results for the expectation values of rZ and p2 ((rz)
and (p?)) and the Heisenberg uncertainty product P, ¢ of some of these diatomic mol-

ecules for various values of n and ¢ are computed and presented in Tables 2, 3 and
4.

5 Conclusions

We have used SU(1, 1) spectrum generating algebra approach to obtain the solu-
tions of the 3-dimensional Schrodinger wave equation with pseudoharmonic molec-
ular potential. The explicit bound state energies, the eigenfunctions and the radial
matrix elements are obtained for this molecular potential. Furthermore, based upon
the solutions obtained, by using Hellmann—Feynman theorem, the expectation values
of r2 and p? are obtained. The Heisenberg uncertainty products Py, ¢ for this potential
are obtained also.

The solutions obtained have been applied to compute the numerical values of the
explicit bound state energies for these selected diatomic molecules. The numerical
values of the explicit bound state energies obtained for these diatomic molecules for
various values of n and £ are compared with the exact method [72] and the Nikiforov-
Uvarov method [57] for CO, NO, CH and N5 and our results are in excellent agreement
with their results as displayed in Tables 2, 3 and 4.

Though, slight differences are noticed in the numerical values of the explicit bound
state energies we obtained when compared with the results of Ikhdair and Sever and
Sever et al. [57,72], this is due to the conversions used by Ikhdair and Sever and
Sever et al. [57,72] as cited in the work of Ikhdair [44], they have used the fol-
lowing conversions: lamu = 931.502MeV/02, lem™! = 1.23985 x 10~*eV, and
hc = 1973.29eVA (cf. pp. 791, Bransden and Joachain [120]). In our calculations, we
have used the following recent conversions: lamu = 931.494028MeV /c?, 1ecm™! =
1.239841875 x 10~*eV, and fic = 1973.29 eVA (cf. pp. 4, Nakamura et al. [119] in
the 2010 edition of the Review of Particle Physics). This explains the reason for the
slight differences.
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Table4 The energy eigenvalues E, ¢(in eV), the expectation values (r2) (in (A)z), ( pz) (in (eV/c)Q) and
the Heisenberg uncertainty relations HUR (in eVA /c) corresponding to the pseudoharmonic potential for
various n and £ quantum numbers for Hp and ScH diatomic molecules

n € Eng¢[FM] (r?) (p?) HUR
Hj
0 0 0.3802143254317158  0.5720067969319436 179353151.5582044  10128.73248449469
1 0 1.136872065928291 0.6158608064535510 534520083.1548633  18143.59306965887
1 1.151940622653841 0.6167341564193854 548652322.0868371  18394.90763852220
2 0 1.893529806424867 0.6597148159751585 889687014.7515233  24226.83853110614
1 1.908598363150416 0.6605881659409929 903819253.6834971  24434.65373466418
2 1.938664759306279 0.6623307257790985 931950074.8372046  24844.70103375790
30 2.650187546921444 0.7035688254967659 1244853946.348182  29594.60134800272
1 2.665256103646993 0.7044421754626004 1258986185.280156  29780.58037104236
2 2.695322499802856 0.7061847353007059 1287117006.433864  30148.67132212521
3 2.740245300798563 0.7087883221856139 1328983795.005013  30691.50035878782
4 0 3.406845287418019 0.7474228350183734 1600020877.944841  34581.67348006918
5 0 4.163503027914595 0.7912768445399808 1955187809.541501  39333.12650193264
ScH
0 0 7.793888021911055E-02 3.208805616306735  71740403.45470674 15172.37652846693
1 0 0.2334806033879131 3.317829166958441  214603976.5716611  26683.69038972540
1 0.2348245288753450  3.318771086193946  217072082.5705855  26840.50206786684
2 0 0.3890223265567156  3.426852717610148  357467549.6886156  34999.83777259364
1 0.3903662520441475 3.427794636845652  359935655.6875399  35125.28306185265
2 0.3930526196575466  3.429677632258357 364867451.6219697  35374.81784500067
30 0.5445640497255191 3.535876268261853  500331122.8055699  42060.77678076121
1 0.5459079752129510  3.536818187497358  502799228.8044953  42170.00660535145
2 0.5485940461540562  3.538701182910063 507731024.7389241  42387.59698123697
3 0.5526210758596637  3.541523572150610  515117708.0628493  42711.84268486642
4 0 0.7001057728943216  3.644899818913559  643194695.9225243  48418.80038470771
5 0 0.8556474960631242  3.753923369565265 786058269.0394796  54321.28962006814

In addition, we obtained the numerical values of the expectation values of rZand pz,

and the Heisenberg uncertainty product for these diatomic molecules. These results
are displayed together with the numerical values of the explicit bound state energies
of these diatomic molecules for various values of n and £ in Tables 2, 3 and 4. The
Heisenberg uncertainty products obtained are valid in each case of these diatomic
molecules for various n and ¢, as expected from Eq. (49) that
Po¢ > 2959.89 eVA/c. (51)

This implies that the numerical value of the Heisenberg uncertainty product P, ¢
can not be less than 2959.89 eVA /c for this principle to hold. The Heisenberg uncer-
tainty products in all these selected diatomic molecules attains its minimum value of
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2959.89 eVA /c, even the lowest Heisenberg uncertainty products (for ground state)
Py.o obtained for Hy is 10128.73248449469 eVA /c which is greater than the mini-
mum.

It is evident from the Tables displayed that the numerical values of the explicit
bound state energies, the expectation values of 7> and p? and the Heisenberg uncer-
tainty products P, ¢ increase as the quantum numbers (n, £) of the state increase. We
only presented the results for few selected diatomic molecules for this paper. Other
diatomic molecules studied in this work, but not shown in the Tables are: I, HCI,
LiH, TiH, VH, CrH, MnH, TiC, NiC, ScN, ScF and Ar,. Similar studies involving the
confined diatomic molecules are currently in progress [121].

It should be noted that the advantage of this SGA method is that, it allows one to
find the explicit bound state energies and the eigenfunctions directly in a simple and
unique way. This method, as applied here to the diatomic molecules demonstrates that
the values obtained are in excellent agreement with earlier results derived from the
other methods. We have also demonstrated that the Heisenberg uncertainty product is
validated by all the diatoms considered. Finally, the method serves as a very useful
link for finding the matrix elements from the creation and annihilation operators in
addition to allowing the construction of the coherent states.
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